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Abstract: This study aims to address the risk challenges brought by increasingly frequent extreme 
weather events and to build a comprehensive assessment model to provide scientific support for 
insurance companies, real estate developers and community managers in disaster prevention and 
risk decision-making. The study is divided into two core tasks. In Task 1, an extreme weather risk 
assessment model is constructed by combining the entropy weight method and time series analysis 
(EWM-ARIMA) to quantitatively predict the intensity and frequency of extreme weather events in 
different regions. At the same time, the Premius-Policyholder risk assessment framework is 
introduced, and the analytic hierarchy process (AHP) is used to integrate economic, social and 
sustainability risks to form a decision support model for insurance companies to optimize their 
underwriting strategies. Task 2 is based on principal component analysis (PCA) and decision tree 
algorithm to establish a real estate construction risk assessment model, and combine house building 
types and geographical zoning to complete model integration. Finally, the stability and robustness 
of the model under key parameter fluctuations are verified through sensitivity testing. The results 
show that the errors are all controlled within 5%, indicating that the model has good practicality and 
reliability. 

1. Introduction  
In recent years, as the trend of global warming becomes increasingly significant, the frequency 

and intensity of extreme weather events (such as hurricanes, floods and heavy rainfall) continue to 
rise. Such natural disasters not only cause serious casualties and infrastructure damage, but also 
have a great impact on regional economic development and social stability. According to the 
assessment report of the Intergovernmental Panel on Climate Change (IPCC), the economic losses 
caused by climate-related disasters are increasing year by year, and extreme climate factors are 
gradually evolving into key variables affecting national economic stability and social resilience. 

Against this background, the insurance industry, as an important pillar of the modern risk 
management system, is facing increasingly severe challenges. The large amount of compensation 
caused by natural disasters continues to compress the profit margins of insurance institutions, and 
some small and medium-sized insurance companies have even fallen into bankruptcy or market 
exit.Traditional insurance pricing and risk assessment models are difficult to accurately respond to 
the high uncertainty and complexity of climate risks, and often have prediction bias and response 
lag in underwriting strategies and compensation forecasts, further weakening their role in risk 
buffering and transfer. Therefore, it is urgent to build a more scientific, dynamic and regionally 
adaptable extreme weather risk assessment and insurance support model, which will not only help 
improve the decision-making quality of insurance companies in underwriting and claims, but also 
provide reasonable financial protection and development support for residents and enterprises in 
high-risk areas, thereby improving the risk resistance and sustainable development level of the 
whole society. 

In response to this research demand, academia and industry have carried out explorations in 
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multiple dimensions. From the existing research, Jahn[1] systematically classified the economic 
impact of extreme weather events and constructed a regional impact model, providing macro-
theoretical support for risk assessment models; Lubchenco and Karl[2] emphasized the urgency of 
improving extreme weather prediction and management capabilities, and pointed out the prospects 
of combining meteorological data with policy tools; Kron et al.[3] further pointed out that the 
extreme climate risk in Europe is increasing, emphasizing that risk models should have regional 
adaptability. In addition, in the study of multi-index evaluation methods, Yang et al. [4] combined 
the AHP and EWM methods to construct an education evaluation model, which provided a 
reference for multidimensional weight modeling in insurance scenarios; while Jiang et al. [5] 
introduced principal component analysis (PCA) into extreme precipitation event modeling, 
effectively identifying the dominant factors in climate variables, which provided inspiration for the 
method selection in real estate risk modeling in this study. 

However, most existing studies focus on the prediction and risk trend analysis of extreme climate 
itself, and rarely systematically integrate climate risks with insurance underwriting strategies, 
regional construction planning and other factors. Therefore, this paper takes improving the 
insurance industry's ability to cope with extreme climate risks as its core goal, and constructs a 
comprehensive, multi-stage, multi-method integrated risk assessment and insurance decision 
support framework. The research is divided into two main tasks: first, based on the entropy weight 
method and ARIMA time series analysis (EWM-ARIMA), an extreme weather risk assessment 
model that considers time dynamics and autocorrelation is constructed to predict the intensity and 
frequency of extreme weather events; second, an insurance and real estate integrated risk model 
combining AHP and PCA methods is constructed to assist insurance institutions in formulating 
precise underwriting strategies by introducing factors such as premium payment ability, wealth 
protection ability, building type and sustainable development factors, and optimize the site selection 
and development planning of real estate projects in high-risk areas. Finally, the stability and 
robustness of the model are verified through sensitivity analysis, providing scientific decision-
making basis for insurance companies, real estate developers and regional managers when facing 
extreme weather risks. 

2. Model building and solving 
2.1. Extreme Weather Risk Evaluation Model with EWM-ARIMA 

In areas where extreme weather occurs frequently, optimizing the allocation of property 
insurance resources has become a key issue to ensure claims settlement capabilities, improve 
system flexibility, and maintain the long-term stable operation of insurance companies. To achieve 
this goal, it is necessary to comprehensively consider multiple influencing factors and 
systematically analyze the decision-making strategies adopted by insurance companies when 
selecting underwriting areas, so as to build a comprehensive and scientific insurance assessment 
model. 

This study aims to establish a multi-dimensional risk assessment scoring model to meet the 
challenges of insurance configuration in extreme climate environments. The model uses two key 
algorithms in combination: one is the EWM-ARIMA algorithm, which is used to capture trends and 
volatility in historical data; the other is the analytic hierarchy process (AHP) to achieve weight 
evaluation and decision optimization under the influence of multiple factors. Through the 
combination of these two algorithms, the model can more accurately assess the regional risk level 
and resource allocation efficiency, and provide strong support for insurance companies to formulate 
scientific underwriting strategies in high-risk areas. 

This paper uses EWM-ARIMA to build a risk level assessment model for extreme weather 
events. The model takes into account three common extreme weather events: floods, tropical 
cyclones, and wildfires, and comprehensively considers multiple factors to predict the risk level 
corresponding to extreme weather. This paper uses the analytic hierarchy process to build the final 
comprehensive risk assessment scoring model, which will integrate the extreme weather risk level 
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assessment model obtained in the first step, as well as other factors such as the insured's own risk 
model, economic development, and social policy conditions. The model will provide insurance 
companies with intelligent underwriting decision support, ensuring that the system has sufficient 
flexibility to pay future claims costs while maintaining the company's long-term health. 

Based on historical meteorological data and related auxiliary information, this paper constructs a 
comprehensive model for assessing the extreme weather risk level. The model comprehensively 
describes the regional risk characteristics of extreme weather events from the two dimensions of 
risk frequency and intensity. In the process of constructing the index system, various factors 
affecting extreme weather risks are fully considered, including meteorological conditions, 
geographical terrain characteristics, and human activities. 

In order to effectively integrate multidimensional factors and quantify their relative importance, 
the model introduces the entropy weight method to assign weights to each indicator. The entropy 
weight method calculates weights through objective data distribution characteristics, overcomes the 
human bias that may be introduced by traditional subjective weighting methods, and thus enhances 
the scientificity and accuracy of the evaluation results. In addition, this method can highlight the 
dominant role of variables with larger information entropy in risk assessment, and improve the 
model's adaptability and explanatory power to highly complex environments. 

After data preprocessing, we obtained data from 12 regions with frequent extreme weather 
events over the past five years. Based on the intensity of extreme weather risk, we established 
positive and negative indicators: 
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Calculate redundancy (difference): 
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Figure 1 Weights with EWM. 
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We used the above algorithm to obtain the weights of various influencing factors, as shown in 
the following Figure 1. 

Based on the weights in the figure we can obtain the risk scores for the intensity of floods 
typhoons and wildfires. 
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In extreme weather risk modeling, temporal dynamics is a key factor that cannot be ignored. The 
occurrence of extreme weather events is not only significantly affected by time variables such as 
seasonality, periodicity, and long-term trends, but also often exhibits a certain degree of 
autocorrelation, that is, the probability of current or future events may be statistically related to past 
observational data. In order to more comprehensively reveal this dynamic evolution feature, this 
paper introduces the time series analysis method to systematically model historical meteorological 
data. 

Time series analysis can effectively capture the changing trends and fluctuation patterns of data 
over time, and has significant advantages in predicting the occurrence time of future extreme 
weather events. In particular, for event types with obvious periodicity, such as seasonal floods or 
tropical cyclones, time series modeling can identify stable periodic structures, thereby improving 
the accuracy and foresight of predictions. At the same time, considering the autocorrelation 
characteristics of extreme weather events, time series models can help improve the accuracy and 
robustness of overall risk assessment by integrating the dependencies between historical data points, 
and provide more scientific decision-making support for the dynamic allocation of insurance 
resources and risk response strategies. 

AR autoregressive model: 

 
1

,
p

t i t i t
i

X a X tε−
=

= ∑ + ∈
 (8)

 

MA moving average model: 
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Differential model: 
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We obtained the following results using ARIMA, as shown in the Figure 2-4. 

 
Figure 2 Flood: F1(t) = 3.123 + 0.456 * F1(t − 1). 
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Figure 3 Typhoon: F2(t) = 1.822 + 0.202 * F2(t − 1) + 0.418 * F2(t − 2) 

 

Figure 4 Wildfires: F3(t) = 0.659 − 0.739 * F3(t − 1) − 0.497 * F3(t − 2) 
The calculation formula for extreme weather assessment is as follows: 
 

, 1, 2,3iR Si Fi i= ∗ =   (11) 
(1,2, and 3 represent the indices corresponding to floods, typhoons, and wildfires, respectively) 
The Google search index ranking over the past five years to some extent reflects the ranking of 

the impact of floods, typhoons, and wildfires during these five years. 
This is because when natural disasters occur, people often turn to Google search for related 

information, including understanding the situation, coping measures, and donation assistance. 
Therefore, the Google search index of that region may reflect an increase in people’s attention and 
search frequency for these disaster events. 

Based on this, we can obtain the weight relationship of these three through the Analytic 
Hierarchy Process(AHP). 

We obtained weights of 0.28, 0.06, and 0.66 for floods, typhoons, and wildfires, respectively. 
Our final formula for extreme weather risk evaluation model is 

 
1 2 30.28 0.06 0.66RQ R R R= ∗ + ∗ + ∗  (12)

 

(R1, R2, andR3 represent the comprehensive indices corresponding to floods, typhoons, and 
wildfires, respectively) To sum up, this model ultimately obtain a risk evaluation score for extreme 
weather in a region ,which will helps quantify the likelihood of extreme weather events and provide 
insurance companies with a quantitative assessment of risk. 
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2.2. Policyholders Premius Risk Evaluation Model 
In a sound legal, technological environment, property is more likely to be effectively protected, 

thereby reducing the personal assessment risk of policyholders. Therefore, it is necessary to discuss 
the property protection ability of policyholders. We obtained weights of 0.25, 0.30, and 0.45 for 
online fraud rate, loan default rate, and crime rate by EWM. 

Based on the above we can obtain the policyholder’s property protection risk score: 
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The premium payment capability of the policyholder directly influences the insurance 
company’s decision to underwrite a policy. A policyholder with a strong ability to pay premiums 
implies higher policy persistency, reducing the insurance company’s risk of claims. Additionally, 
for high-sum insured policies, the premium payment capability directly determines whether the 
policyholder can timely and fully meet the payment obligations, thus impacting the insurance 
company’s operational stability. 

We obtained weights of 0.41 0.28 and 0.31 for floods typhoons and wildfires respectively. We 
get the Premium payment risk score: 
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Above all, we will obtain the policyholder-premium risk evaluation score(PR): 
 

R R RP H M= +  (15)
 

Table 1 Score level 

Score Range Self-Risk Level Underwriting Decision 
0.20~0.60 Low Proceed to comprehensive assessment 
0.60~0.75 Moderate Further observation required 
Over 0.75 High Reject the application 

It should be noted that as premiums directly affect the profits of insurance companies once the 
risk evaluation of policyholders-premiumsin a certain region exceeds a certain level, insurance 
companies will directly abandon underwriting in that region! Based on regional data analysis and 
experience we have divided the score into the following three levels, as shown in the Table 1. 

Risk Assessment and Pricing: Economic conditions directly impact a region’s sensitivity to 
natural disasters. In economically vulnerable areas, disasters may have a more significant impact on 
individuals and businesses. Insurance companies need to consider these factors to ensure that their 
underwriting and risk assessment for policies are reasonable. 

Claim Frequency and Amount: Economic conditions also correlate with claim frequency and 
amount. In economically depressed areas, homeowners may struggle more to bear the losses caused 
by disasters, leading to higher claim frequency and amounts. This directly affects the insurance 
company’s costs and profitability. 

We obtained weights of 0.22507,0.29357,and 0.48136 inflation rate long term decline in per 
capita income growth rate and decline in labor conductivity respectively with EWM. We get the 
Economic Conditionres (ER): 
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Social Responsibility along with Sustainability scores 
Insurance companies are increasingly focusing on social responsibility and sustainability in 

underwriting decisions. In economically challenging regions, insurance companies may face greater 
responsibility pressures, requiring a balance between risk assumption and considerations for social 
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support. 
Public Image and Reputation: The performance of insurance companies in terms of social 

responsibility and sustainability directly affects their public image and reputation. Actively 
fulfilling social responsibility helps establish a positive image, influencing consumer and industry 
trust in the company. 

Risk Management: Neglecting social responsibility and sustainability factors may lead to 
additional risks, such as societal resistance and legal disputes. By actively fulfilling social 
responsibility, companies can mitigate these potential risks, protecting their economic interests. 

While these factors are crucial, they cannot be solely accomplished through mathematical 
modeling because they involve subjectivity, ethical judgments, and complex societal dynamics. So 
we did not include it in the comprehensive risk score. 

2.3. Breakeven score Model with the Analytic Hierarchy Process 
Employing the Analytic Hierarchy Process (AHP), the evaluation of extreme weather risk levels, 

evaluation of policyholders-premiums scores, economic condition scores, and social responsibility 
along with sustainability scores are integrated to directly influence the insurance company’s 
decision-making regarding policy underwriting.  

Construct a judgment matrix A (orthogonal matrix) and use aij to represent the comparison result 
of the i-th relative to the j-th: 
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Perform geometric averaging (root square method) on the row vectors of matrix A, and then 
normalize them to obtain the weights of each evaluation indicator and the eigen vector W: 
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Based on a large amount of data investigation and experience summary, we set parameters and 
use AHP to obtain the following weights, as shown in the Table 2. 

Table 2 Final Weights 

Scores Analysis Weight(%) 
extreme weather risk level 47.911 

policyholders-premiums scores 44.293 
economic condition scores 7.796 

In summary we have obtained the final comprehensive evaluation score model for insurance 
company underwriting policy decision-making strategies, as shown in the Table 3: 
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Table 3 Final Evaluation Level 

Score Range Self-Risk Level Underwriting Decision 
0~0.55 Low decide to underwrite the policy 

0.55~0.65 Moderate further observation required 
over 0.65 High reject the application 

We choose Zhanjiang in Eurasia and Perth in Australia as locations for evaluating the 
comprehensive risk of extreme weather mainly due to their significant characteristics in extreme 
weather events. Zhanjiang is frequently affected by typhoons, while Perth experiences frequent 
bushfires. These two extreme weather phenomena can have a substantial impact on local 
communities and economies, especially in the insurance industry, where these risks need effective 
assessment and management. 

In Zhanjiang, due to its geographical location, the influence of monsoons, and a warm and humid 
climate, typhoons regularly make landfall, causing significant losses and risks to local residents and 
businesses. Therefore, understanding and assessing the extreme weather risk in the Zhanjiang 
region is crucial for insurance companies to better design insurance policy strategies and pricing. 
Simultaneously, the Perth region often faces the threat of bushfires, especially during dry seasons. 
Bushfires not only cause damage to the natural environment but can also result in substantial losses 
to homes, farmlands, and infrastructure. Insurance companies need a comprehensive understanding 
of the bushfire risk in the Perth region and develop corresponding insurance strategies to mitigate 
potential economic losses. 

Considering that the final score in Zhanjiang are low-risk, we believe that insurance companies 
can underwrite policies here Due to Perth’s PR score exceeding 60, we recommend that insurance 
companies do not underwrite policies here. 

2.4. the sub model of Real Estate Construction with PCA 
We plan to establish a sub-model for evaluate the risks of real estate construction(SREC)by 

considering various factors such as basic resources and sustainability, using the principal 
component analysis(PCA). Subsequently, we will integrate this sub-model with the insurance model 
from Task 1 using the decision tree algorithm to create the final real estate construction 
evaluation(REC) model. 

Principal Component Analysis (PCA) is used to consider the reasons for weighting various 
aspects of real estate risk assessment. There are several reasons for this: 

Dimensionality Reduction and Simplification: PCA can identify the most important variables in 
a dataset, reducing the dimensions of the data. In real estate risk assessment, there may be multiple 
factors involved, such as underlying resources, sustainability, etc. Through PCA, these factors can 
be condensed into a few principal components, simplifying the model and improving its 
interpretability. 

Reducing Collinearity: In the real estate field, different risk factors may exhibit some correlation, 
known as collinearity. Principal Component Analysis helps eliminate collinearity, ensuring that 
variables in the model are independent of each other, providing a more accurate reflection of the 
impact of various factors on real estate risk. 

Table 4 PCA test 

KMO 0.708 
Bartlett Approx.Chi-Square 93.204 

df 45 
P 0.000*** 
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KMO test was performed between variables, **, *, * respectively indicate the significance level 
of 1%, 5% and 10%. If the KMO test is passed (KMO> 0.6), it indicates that there is a correlation 
between the variables, which meets the requirements of PCA. If the Bartlett test is performed with P 
< 0.05, it shows significance, and PCA can be performed. The results are shown in Table 4 below, 
from which it can be concluded that PCA can be performed. 

Therefore, the principal component analysis(PCA) is deemed effectiveis deemed effective, with 
a moderate degree of correlation. Subsequently, we calculate the score of each component based on 
its factor score coefficient (principal component load), obtain the factor formula, and finally 
normalize it to obtain the factor weight score, as shown in the Table 5: 

Table 5 Factor load matrix heatmap 

N15 -0.546 0.298 N7 0.264 0.070 
4 -0.720 0.518 N6 0.199 0.040 

N1 3 -0.187 0.035 N5 0 710 0.505 
N12 0.672 0.451 4 -0.437 0.191 
N11 0.182 0.033 N3 -0.030 0.001 
N1 0 0.236 0.056 N2 0.721 0.520 
N9 -0.691 0.478 N1 0.740 0.548 
NB -0.729 0.531    

Then we will obtain the sub model of real estate construction(S-REC): 
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Decision trees provide intuitive decision rules that are easy to interpret and understand. This 
allows the information extracted from different models to be communicated to decision makers and 
stakeholders in a clear manner. The structure of the constructed decision tree is shown in Figure 5. 

 

Figure 5 Decision Tree Structure 
Then we will obtain the narrowly defined REC model: 

 
0.542 0.458R R RO C N= ∗ + ∗  (23)

 

A robust real estate construction evaluation model, capable of addressing extreme weather 
conditions, should not only consider the feasibility of construction but also take into account the 
specific types of construction. Therefore, we will elaborate on two aspects: house construction types 
and construction area types. 

Geographical factors play a vital role in urban planning and architectural design to cope with the 
risks of extreme natural disasters. In order to enhance the adaptability of buildings to natural 
disasters, different regions need to adopt targeted engineering measures and design concepts 
according to local conditions. 
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In areas prone to floods, residential buildings should focus on improving flood control 
performance, such as raising the foundation, using waterproof building materials, and building 
efficient drainage systems to reduce property losses and personnel risks caused by floods. In areas 
where wind disasters frequently occur, wind-proof architectural design strategies should be adopted, 
including strengthening building structures, selecting wind-resistant materials, and rationally 
planning emergency evacuation routes to improve disaster response capabilities. For areas with 
frequent seismic activities, building planning should focus on seismic resistance, and effectively 
improve safety and structural stability in earthquake events by adopting structural designs and 
material configurations that comply with seismic standards. 

At the same time, the spatial layout of urban functional areas also needs to fully consider the 
dual impact of geographical factors on safety and functionality. Commercial areas are usually 
located in the core areas of cities to maximize customer traffic, facilitate transportation, and 
promote economic activities. Industrial areas tend to be located in urban fringe areas, which not 
only helps reduce interference with residents' lives, but also facilitates the implementation of 
environmental governance measures. Residential area planning should be rationally laid out with 
public service facilities as the core to ensure that residents can easily access basic service resources 
such as education and medical care in their daily lives. 

By incorporating disaster response capabilities into the overall consideration framework of urban 
space and architectural design, the climate adaptability and infrastructure resilience of the region 
can be effectively improved, laying a solid foundation for sustainable development in the context of 
frequent extreme weather. 

3. Conclusion  
In summary, this study has built a set of systematic and forward-looking assessment and decision 

support models around the risk assessment and resource allocation issues under the background of 
frequent extreme weather events. By combining the entropy weight method with time series 
analysis, the risk level of extreme weather in different regions is accurately identified, providing a 
data basis for insurance companies to formulate scientific underwriting strategies. At the same time, 
the introduction of methods such as AHP and PCA effectively integrates insurance risk assessment 
with real estate construction planning, realizing the overall linkage from individual property 
protection to regional sustainable development. The sensitivity test results of the model further 
verified its stability and applicability, showing good promotion potential in actual scenarios. Future 
research can introduce social, environmental and policy variables in more dimensions, continuously 
optimize the model structure, and provide more in-depth decision support for disaster response and 
urban resilience construction. 
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